Genomic analysis of P elements in natural populations of Drosophila melanogaster

Author:

Bergman Casey M.,Nelson Michael G.,Bondarenko Vladyslav,Kozeretska Iryna A.

Abstract

AbstractThe Drosophila melanogaster P transposable element provides one of the best cases of horizontal transfer of a mobile DNA sequence in eukaryotes. Invasion of natural populations by the P element has led to a syndrome of phenotypes known as P-M hybrid dysgenesis that emerges when strains differing in their P element composition mate and produce offspring. Despite extensive research on many aspects of P element biology, many questions remain about the genomic basis of variation in P-M dysgenesis phenotypes in natural populations. Here we compare gonadal dysgenesis phenotypes and genomic P element predictions for isofemale strains obtained from three worldwide populations of D. melanogaster to illuminate the molecular basis of natural variation in cytotype status. We show that the number of predicted P element insertions in genome sequences from isofemale strains is highly correlated across different bioinformatics methods, but the absolute number of insertions per strain is sensitive to method and filtering strategies. Regardless of method used, we find that the number of euchromatic P element insertions predicted per strain varies significantly across populations, with strains from a North American population having fewer P element insertions than strains from populations sampled in Europe or Africa. Despite these geographic differences, numbers of euchromatic P element insertions are not strongly correlated with the degree of gonadal dysgenesis exhibited by an isofemale strain. Thus, variation in P element insertion numbers across different populations does not necessarily lead to corresponding geographic differences in gonadal dysgenesis phenotypes. Additionally, we show that pool-seq samples can uncover population differences in the number of P element insertions observed from isofemale lines, but that efforts to rigorously detect differences in the number of P elements across populations using pool-seq data must properly control for read depth per strain. Our work supports the view that euchromatic P element copy number is not sufficient to explain variation in gonadal dysgenesis across strains of D. melanogaster, and informs future efforts to decode the genomic basis of geographic and temporal differences in P element induced phenotypes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3