Characterization of a spectrally diverse set of fluorescent proteins as FRET acceptors for mTurquoise2

Author:

Mastop Marieke,Bindels Daphne S.,Shaner Nathan C.ORCID,Postma Marten,Gadella Theodorus W. J.ORCID,Goedhart JoachimORCID

Abstract

AbstractGenetically encoded Förster Resonance Energy Transfer (FRET) based biosensors report on changes in biochemical states in single living cells. The performance of biosensors depends on their brightness and dynamic range, which are dependent on the characteristics of the fluorescent proteins that are employed. Cyan fluorescent protein (CFP) is frequently combined with yellow fluorescent protein (YFP) as FRET pair in biosensors. However, current YFPs are prone to photobleaching and pH changes. In addition, more efficient acceptors may yield biosensors that have higher contrast. In this study, we evaluated the properties of a diverse set of acceptor fluorescent proteins in combination with the optimized CFP variant mTurquoise2 as the donor. To determine the theoretical performance of acceptors, the Förster radius was determined. The practical performance was determined by measuring FRET efficiency and photostability of tandem fusion proteins in mammalian cells. Our results show that mNeonGreen is the most efficient acceptor for mTurquoise2 and that the photostability is better than SYFP2. The non-fluorescent YFP variant sREACh is an efficient acceptor, which is useful in lifetime-based FRET experiments. Among the orange and red fluorescent proteins, mChery and mScarlet-I are the best performing acceptors. Several new pairs were applied in a multimolecular FRET based sensor for detecting activation of a heterotrimeric G-protein by G-protein coupled receptors. The sensor with mScarlet-I as acceptor and mTurquoise2 as donor shows a higher dynamic range in ratiometric FRET imaging experiments and less variability than with mCherry as acceptor, due to the high quantum yield and efficient maturation of mScarlet-I. Overall, the sensor with mNeonGreen as acceptor and mTurquoise2 as donor showed the highest dynamic range in ratiometric FRET imaging experiments with the G-protein sensor.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3