DNA amplification method tolerant to sample degradation

Author:

Wang Gang,Maher Elizabeth,Brennan Cameron,Chin Lynda,Leo Christopher,Kaur Manjit,Zhu Penny,Rook Martha,Wolfe Jia Liu,Makrigiorgos G. Mike

Abstract

Despite recent advances in linear whole genome amplification of intact DNA/RNA, amplification of degraded nucleic acids in an unbiased fashion remains a serious challenge for genetic diagnosis. We describe a new whole genome amplification procedure, RCA–RCA (Restriction and Circularization-Aided Rolling Circle Amplification), which retains the allelic differences among degraded amplified genomes while achieving almost complete genome coverage. RCA–RCA utilizes restriction digestion and whole genome circularization to generate genomic sequences amenable to rolling circle amplification. When intact genomic DNA is used, RCA–RCA retains gene-amplification differences (twofold or higher) between complex genomes on a genome-wide scale providing highly improved concordance with unamplified material as compared with other amplification methodologies including multiple displacement amplification. Using RCA–RCA, formalin-fixed samples of modest or substantial DNA degradation were successfully amplified and screened via array-CGH or Taqman PCR that displayed retention of the principal gene amplification features of the original material. Microsatellite analysis revealed that RCA–RCA amplified genomic DNA is representative of the original material at the nucleotide level. Amplification of cDNA is successfully performed via RCA–RCA and results to unbiased gene expression analysis (R2 = 0.99). The simplicity and universal applicability of RCA–RCA make it a powerful new tool for genome analysis with unique advantages over previous amplification technologies.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics(clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3