Assessing by modeling the consequences of increased recombination in genomic selection ofOryza sativaandBrassica rapa

Author:

Tourrette E.ORCID,Bernardo R.,Falque M.ORCID,Martin O.ORCID

Abstract

ABSTRACTRecombination generates genetic diversity but the number of crossovers per meiosis is limited in most species. Previous studies showed that increasing recombination can enhance response to selection. However, such studies did not assume a specific method of modifying recombination. Our objective was to test whether two methods used to increase recombination in plants could increase the genetic gain in a population undergoing genomic selection. The first method, inOryza sativa,used a mutant of anti-crossover genes to increase global recombination without affecting the recombination landscape. The second one uses the ploidy level of a cross betweenBrassica rapaandBrassica napusto increase the recombination particularly in pericentromeric regions. These recombination landscapes were used to model recombination while quantitative trait loci positions were based on the actual gene distribution. We simulated selection programs with initially a cross between two inbred lines, for two species. Increased recombination enhanced the response to selection. The amount of enhancement in the cumulative gain largely depended on the species and the number of quantitative trait loci (2, 10, 20, 50, 200 or 1000 per chromosome). Genetic gains were increased up to 30% after 20 generations. Furthermore, modifying the recombination landscape was the most effective: the gain was larger by 25% with the first method and 33% with the second one inB. rapa, and 15% compared to 11% inO. sativa. Thus, increased recombination enhances the genetic gain in genomic selection for long-term selection programs, with visible effects after four to five generations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3