The SWI/SNF subunits BRG1 affects alternative splicing by changing RNA binding factor interactions with RNA

Author:

Zapater Antoni GañezORCID,Mackowiak Sebastian D.ORCID,Guo Yuan,Jordan-Pla Antonio,Friedländer Marc R.,Visa NeusORCID,Farrants Ann-Kristin ÖstlundORCID

Abstract

AbstractBRG1 and BRM are ATPase core subunits of the human SWI/SNF chromatin remodelling complexes. The function of the SWI/SNF complexes in transcriptional initiation has been well studied, while a function in alternative splicing has only been studied for a few cases for BRM-containing SWI/SNF complexes. Here, we have expressed BRG1 in C33A cells, a BRG1 and BRM-deficient cell line, and we have analysed the effects on the transcriptome by RNA sequencing. We have shown that BRG1 expression affects the splicing of a subset of genes. For some, BRG1 expression favours exon inclusion and for others, exon skipping. Some of the changes in alternative splicing induced by BRG1 expression do not require the ATPase activity of BRG1. Among the exons regulated through an ATPase-independent mechanism, the included exons had signatures of high GC-content and lacked a positioned nucleosome at the exon. By investigating three genes in which the expression of either wild-type BRG1 or a BRG1-ATPase-deficient variant favoured exon inclusion, we showed that expression of the ATPases promotes the local recruitment of RNA binding factors to chromatin and RNA in a differential manner. The hnRNPL, hnRNPU and SAM68 proteins associated to chromatin in C33A cells expressing BRG1 or BRM, but their association with RNA varied. We propose that SWI/SNF can regulate alternative splicing by interacting with splicing-RNA binding factor and altering their binding to the nascent pre-mRNA, which changes RNP structure.Author summarySplicing, in particular alternative splicing, is a combinatorial process which involves splicing factor complexes and many RNA binding splicing regulatory proteins in different constellations. Most splicing events occur during transcription, which also makes the DNA sequence, the chromatin state and the transcription rate at the exons important components that influence the splicing outcome. We show here that the ATP-dependent chromatin remodelling complex SWI/SNF influences the interactions of splicing regulatory factors with RNA during transcription on certain exons that have a high GC-content. The splicing on this type of exon rely on the ATPase BRG1 and favour inclusion of alternative exons in an ATP-independent manner. SWI/SNF complexes are known to alter the chromatin structure at promoters in transcription initiation, and have been previously shown to alter the transcription rate or nucleosome position in splicing. Our results suggests a further mechanism for chromatin remodelling proteins in splicing: to change the interaction patterns of RNA binding splicing regulatory factors at alternative exons to alter the splicing outcome.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3