Molecular Mechanism of Action of Mitochondrial Therapeutic SS-31 (Elamipretide): Membrane Interactions and Effects on Surface Electrostatics

Author:

Mitchell Wayne,Ng Emily A.,Tamucci Jeffrey D.,Boyd Kevin,Sathappa Murugappan,Coscia Adrian,Pan Meixia,Han Xianlin,Eddy Nicholas A.,May Eric R.,Szeto Hazel H.,Alder Nathan N.

Abstract

AbstractMitochondrial dysfunction includes heritable diseases, acquired pathologies, and age-related declines in health. Szeto-Schiller (SS) peptides comprise a class of amphipathic tetrapeptides that have demonstrated efficacy in treating a wide array of mitochondrial disorders, and are believed to target mitochondrial membranes due to their enrichment in the anionic phospholipid cardiolipin (CL). However, little is known regarding how SS peptides interact with or alter the physical properties of lipid bilayers. In this study, we have analyzed the interactions of the lead compound SS-31 (Elamipretide) with model and mitochondrial membranes using biophysical and computational approaches. Our results show that this polybasic peptide partitions into the membrane interfacial region with affinity and binding density that are directly related to surface charge. SS-31 binding does not destabilize lamellar bilayers even at the highest binding concentrations; however, it does cause saturable alterations in lipid packing. Most notably, SS-31 modulates the surface electrostatic properties of model and mitochondrial membranes, which could play a significant role in the mitoprotective properties of this compound. As a proof of concept, we show that SS-31 alters ion distribution at the membrane interface with implications for maintaining mitochondrial membranes subject to divalent cation (calcium) stress. Taken together, these results support a mechanism of action in which SS peptides interact with lipid bilayers and alter the biophysical (primarily electrostatic) properties of mitochondrial membranes as their primary mechanism of action. Understanding this molecular mechanism is key to the development of future compound variants with enhanced efficacy.SignificanceSzeto-Schiller (SS) peptides are among the most promising therapeutic compounds for mitochondrial dysfunction. However, the molecular target(s) and the mechanism of action of SS peptides are poorly understood. In this study, we evaluate the interaction of the lead compound SS-31 (Elamipretide) with mitochondrial and synthetic model membranes using a host of biophysical techniques. Our results show that SS-31 membrane interaction is driven largely by the negative surface charge of mitochondrial membranes and that SS-31 alters lipid bilayer properties, most notably electrostatics at the membrane interface. This work supports a mechanism in which SS peptides act on a key physical property of mitochondrial membranes rather than with a specific protein complex, consistent with the exceptionally broad therapeutic efficacy of these compounds.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3