Author:
Platanitis Ekaterini,Demiroz Duygu,Capelle Christophe,Schneller Anja,Hartl Markus,Gossenreiter Thomas,Müller Mathias,Novatchkova Maria,Decker Thomas
Abstract
AbstractCells maintain the balance between homeostasis and inflammation by adapting and integrating the activity of intracellular signalling cascades, including the JAK-STAT pathway. Our understanding how a tailored switch from homeostasis to a strong receptor-dependent response is coordinated remains limited. We used an integrated transcriptomic and proteomic approach to analyze transcription-factor binding, gene expression and in vivo proximity-dependent labelling of proteins in living cells under homeostatic and interferon (IFN)-induced conditions. We show that interferons (IFN) switch murine macrophages from resting-state to induced gene expression by alternating subunits of transcription factor ISGF3. Whereas preformed STAT2-IRF9 complexes control basal expression of IFN-induced genes (ISG), both type I IFN and, unexpectedly, IFNγ cause promoter binding of a complete ISGF3 complex containing STAT1, STAT2 and IRF9. In contrast to the dogmatic view of ISGF3 formation in the cytoplasm, our results suggest a model wherein the assembly of the ISGF3 complex occurs on DNA.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献