Transient enhancement of stimulus-evoked activity in neocortex during sensory learning

Author:

Zhu MoORCID,Kuhlman Sandra J.ORCID,Barth Alison L.

Abstract

Synaptic potentiation has been linked to learning in sensory cortex, but the connection between this potentiation and increased sensory-evoked neural activity is not clear. Here, we used longitudinal in vivo Ca2+imaging in the barrel cortex of awake mice to test the hypothesis that increased excitatory synaptic strength during the learning of a whisker-dependent sensory-association task would be correlated with enhanced stimulus-evoked firing. To isolate stimulus-evoked responses from dynamic, task-related activity, imaging was performed outside of the training context. Although prior studies indicate that multiwhisker stimuli drive robust subthreshold activity, we observed sparse activation of L2/3 pyramidal (Pyr) neurons in both control and trained mice. Despite evidence for excitatory synaptic strengthening at thalamocortical and intracortical synapses in this brain area at the onset of learning—indeed, under our imaging conditions thalamocortical axons were robustly activated—we observed that L2/3 Pyr neurons in somatosensory (barrel) cortex displayed only modest increases in stimulus-evoked activity that were concentrated at the onset of training. Activity renormalized over longer training periods. In contrast, when stimuli and rewards were uncoupled in a pseudotraining paradigm, stimulus-evoked activity in L2/3 Pyr neurons was significantly suppressed. These findings indicate that sensory-association training but not sensory stimulation without coupled rewards may briefly enhance sensory-evoked activity, a phenomenon that might help link sensory input to behavioral outcomes at the onset of learning.

Funder

NIH

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3