A Drosophila Insulator Interacting Protein Suppresses Enhancer-Blocking Function and Modulates Replication Timing

Author:

Stow Emily C.,An Ran,Schoborg Todd A.,Davenport Nastasya M.,Simmons James R.,Labrador Mariano

Abstract

AbstractInsulators play important roles in genome structure and function in Drosophila and mammals. More than six different insulator proteins are required in Drosophila for normal genome function, whereas CTCF is the only identified protein contributing to insulator function in mammals. Interactions between a DNA binding insulator protein and its interacting partner proteins define the properties of each insulator site. The different roles of insulator protein partners in the Drosophila genome and how they confer functional specificity remain poorly understood. Functional analysis of insulator partner proteins in Drosophila is necessary to understand how genomes are compartmentalized and the roles that different insulators play in genome function. In Drosophila, the Suppressor of Hairy wing [Su(Hw)] insulator is targeted to the nuclear lamina, preferentially localizes at euchromatin/heterochromatin boundaries, and is associated with the Gypsy retrotransposon. The properties that the insulator confers to these sites rely on the ability of the Su(Hw) protein to bind the DNA at specific sites and interact with Mod(mdg4)-67.2 and CP190 partner proteins. HP1 and insulator partner protein 1 (HIPP1) is a recently identified partner of Su(Hw), but how HIPP1 contributes to the function of Su(Hw) insulators has not yet been elucidated. Here, we find that mutations in the HIPP1 crotonase-like domain have no impact on the function of Su(Hw) enhancer-blocking activity but do exhibit an impaired ability to repair double-strand breaks. Additionally, we find that the overexpression of each HIPP1 and Su(Hw) causes defects in cell proliferation by limiting the progression of DNA replication. We also find that HIPP1 overexpression suppresses the Su(Hw) insulator enhancer-blocking function.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3