Author:
Anderson Collin J.,Anderson Daria Nesterovich,Pulst Stefan M.,Butson Christopher R.,Dorval Alan D.
Abstract
AbstractBackgroundAchieving deep brain stimulation (DBS) dose equivalence is challenging, especially with pulse width tuning and directional contacts. Further, the precise effects of pulse width tuning are unknown.MethodsWe created multicompartment neuron models for two axon diameters and used finite element modeling to determine extracellular influence from standard and segmented electrodes. We analyzed axon activation profiles and calculated volumes of tissue activated.ResultsLong pulse widths focus the stimulation effect on small, nearby fibers, suppressing white matter tract activation (responsible for some DBS side effects) and improving battery utilization. Directional leads enable similar benefits to a greater degree. We derive equations for equivalent activation with pulse width tuning and segmented contacts.InterpretationsWe find agreement with classic studies and reinterpret recent articles concluding that short pulse widths focus the stimulation effect on small, nearby fibers, decrease side effects, and improve power consumption. Our field should reconsider shortened pulse widths.
Publisher
Cold Spring Harbor Laboratory
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献