Reorganization of budding yeast cytoplasm upon energy depletion

Author:

Marini Guendalina,Nüske Elisabeth,Leng Weihua,Alberti SimonORCID,Pigino GaiaORCID

Abstract

AbstractYeast cells, when exposed to stress, can enter a protective state in which cell division, growth and metabolism are downregulated. They remain viable in this state until nutrients become available again. How cells enter this protective survival state and what happens at a cellular and subcellular level is largely unknown. In this study, we used electron tomography to investigate the stress-induced ultrastructural changes in the cytoplasm of yeast cells. After ATP depletion, we observed a significant cytosolic compaction and an extensive cytoplasmic reorganization, as well as the emergence of distinct membrane-bound and membrane-less organelles. By using correlative light and electron microscopy (CLEM), we further demonstrate that one of these membrane-less organelles is generated by the reversible polymerization into large bundles of filaments of the eukaryotic translation initiation factor 2B (eIF2B), an essential enzyme in the initiation of protein synthesis. The changes we observe are part of a stress-induced survival strategy, allowing yeast cells to save energy, protect proteins from degradation, and inhibit protein functionality by forming assemblies of said proteins.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3