Strengthening of the efferent olivocochlear system leads to synaptic dysfunction and tonotopy disruption of a central auditory nucleus

Author:

Di Guilmi Mariano N.,Boero Luis E.,Castagna Valeria C.,Rodríguez-Contreras Adrián,Wedemeyer Carolina,Gómez-Casati María Eugenia,Elgoyhen Ana Belén

Abstract

AbstractThe auditory system in many mammals is immature at birth but precisely organized in adults. Spontaneous activity in the inner ear plays a critical role in guiding this process. This is shaped by an efferent pathway that descends from the brainstem and makes transient direct synaptic contacts with inner hair cells (IHCs). In this work, we used an α9 cholinergic receptor knock-in mouse model (of either sex) with enhanced medial efferent activity (Chrna9L9’T, L9’T) to understand the role of the olivocochlear system in the correct establishment of auditory circuits. Wave III of auditory brainstem responses (which represents synchronized activity of synapses within the superior olivary complex) were smaller in L9’T mice, suggesting a central dysfunction. The mechanism underlying this functional alteration was analysed in brain slices containing the medial nucleus of the trapezoid body (MNTB), where neurons are topographically organized along a medio-lateral axis. The topographic organization of MNTB physiological properties observed in WT mice was abolished in the L9’T mice. Additionally, electrophysiological recordings in slices evidenced MNTB synaptic alterations, which were further supported by morphological alterations. The present results suggest that the transient cochlear efferent innervation to IHCs during the critical period before the onset of hearing is involved in the refinement of topographic maps as well as in setting the correct synaptic transmission at central auditory nuclei.Significance StatementCochlear inner hair cells of altricial mammals display spontaneous electrical activity before hearing onset. The pattern and firing rate of these cells is crucial for the correct maturation of the central auditory pathway. A descending efferent innervation from the central nervous system contacts hair cells during this developmental window. The function of this transient efferent innervation remains an open question. The present work shows that the genetic enhancement of efferent function disrupts the orderly topographic distribution at the medial nucleus of the trapezoid body level and causes severe synaptic dysfunction. Thus, the transient efferent innervation to the cochlea is necessary for the correct establishment of the central auditory circuitry.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3