Author:
Abkallo Hussein M.,Martinelli Axel,Inoue Megumi,Ramaprasad Abhinay,Xangsayarath Phonepadith,Gitaka Jesse,Tang Jianxia,Yahata Kazuhide,Zoungrana Augustin,Mitaka Hayato,Hunt Paul,Carter Richard,Kaneko Osamu,Mustonen Ville,Illingworth Christopher J. R.,Pain Arnab,Culleton Richard
Abstract
ABSTRACTIdentifying the genetic determinants of phenotypes that impact on disease severity is of fundamental importance for the design of new interventions against malaria. Traditionally, such discovery has relied on labor-intensive approaches that require significant investments of time and resources. By combining Linkage Group Selection (LGS), quantitative whole genome population sequencing and a novel mathematical modeling approach (qSeq-LGS), we simultaneously identified multiple genes underlying two distinct phenotypes, identifying novel alleles for growth rate and strain specific immunity (SSI), while removing the need for traditionally required steps such as cloning, individual progeny phenotyping and marker generation. The detection of novel variants, verified by experimental phenotyping methods, demonstrates the remarkable potential of this approach for the identification of genes controlling selectable phenotypes in malaria and other apicomplexan parasites for which experimental genetic crosses are amenable.Significance StatementThis paper describes a powerful and rapid approach to the discovery of genes underlying medically important phenotypes in malaria parasites. This is crucial for the design of new drug and vaccine interventions. The approach bypasses the most time-consuming steps required by traditional genetic linkage studies and combines Mendelian genetics, quantitative deep sequencing technologies, genome analysis and mathematical modeling. We demonstrate that the approach can simultaneously identify multigenic drivers of multiple phenotypes, thus allowing complex genotyping studies to be conducted concomitantly. This methodology will be particularly useful for discovering the genetic basis of medically important phenotypes such as drug resistance and virulence in malaria and other apicomplexan parasites, as well as potentially in any organism undergoing sexual recombination.
Publisher
Cold Spring Harbor Laboratory