Quantitative Seq-LGS – Genome-Wide Identification of Genetic Drivers of Multiple Phenotypes in Malaria Parasites

Author:

Abkallo Hussein M.,Martinelli Axel,Inoue Megumi,Ramaprasad Abhinay,Xangsayarath Phonepadith,Gitaka Jesse,Tang Jianxia,Yahata Kazuhide,Zoungrana Augustin,Mitaka Hayato,Hunt Paul,Carter Richard,Kaneko Osamu,Mustonen Ville,Illingworth Christopher J. R.,Pain Arnab,Culleton Richard

Abstract

ABSTRACTIdentifying the genetic determinants of phenotypes that impact on disease severity is of fundamental importance for the design of new interventions against malaria. Traditionally, such discovery has relied on labor-intensive approaches that require significant investments of time and resources. By combining Linkage Group Selection (LGS), quantitative whole genome population sequencing and a novel mathematical modeling approach (qSeq-LGS), we simultaneously identified multiple genes underlying two distinct phenotypes, identifying novel alleles for growth rate and strain specific immunity (SSI), while removing the need for traditionally required steps such as cloning, individual progeny phenotyping and marker generation. The detection of novel variants, verified by experimental phenotyping methods, demonstrates the remarkable potential of this approach for the identification of genes controlling selectable phenotypes in malaria and other apicomplexan parasites for which experimental genetic crosses are amenable.Significance StatementThis paper describes a powerful and rapid approach to the discovery of genes underlying medically important phenotypes in malaria parasites. This is crucial for the design of new drug and vaccine interventions. The approach bypasses the most time-consuming steps required by traditional genetic linkage studies and combines Mendelian genetics, quantitative deep sequencing technologies, genome analysis and mathematical modeling. We demonstrate that the approach can simultaneously identify multigenic drivers of multiple phenotypes, thus allowing complex genotyping studies to be conducted concomitantly. This methodology will be particularly useful for discovering the genetic basis of medically important phenotypes such as drug resistance and virulence in malaria and other apicomplexan parasites, as well as potentially in any organism undergoing sexual recombination.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3