Diauxie and co-utilization are not exclusive during growth in nutritionally complex environments

Author:

Perrin Elena,Giovannini Michele,Di Patti Francesca,Cardazzo Barbara,Carraro Lisa,Fagorzi Camilla,Ghini Veronica,Turano Paola,Fani Renato,Fondi MarcoORCID

Abstract

AbstractThe classic view of microbial growth strategy when multiple carbon sources are available states that they either metabolize them sequentially (diauxic growth) or simultaneously (co-utilization). This perspective is biased by the fact that this process has been mainly analysed in over-simplified laboratory settings, i.e. using a few model microorganisms and growth media containing only two alternative compounds. Models concerning the mechanisms and the dynamics regulating nutrients assimilation strategies in conditions that are closer to the ones found in natural settings (i.e. with many alternative carbon/energy sources) are missing. Here, we show that bacterial co-utilization and sequential uptake of multiple substrates can coexist when multiple possible nutrients are provided in the same growth experiment, leading to an efficient exploitation of nutritionally complex settings. The order of nutrient uptake is determined by the actual biomass yield (and growth rate) that can be achieved when the same compounds are provided as single carbon sources. Finally, using two alternative theoretical models we show that this complex metabolic phenotype can be explained by a tight regulation process that allows microbes to actively modulate the different assimilatory pathways involved.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3