Genetic differentiation is determined by geographic distance in Clarkia pulchella

Author:

Bontrager MeganORCID,Angert Amy L.ORCID

Abstract

AbstractBoth environmental differences and geographic distances may contribute to the genetic differentiation of populations on the landscape. Understanding the relative importance of these drivers is of particular interest in the context of geographic range limits, as both swamping gene flow and lack of genetic diversity are hypothesized causes of range limits. We investigated the landscape genetic structure of 32 populations of the annual wildflower Clarkia pulchella from across the species’ geographic range in the interior Pacific North-west. We tested whether climatic differences between populations influenced the magnitude of their genetic differentiation. We also investigated patterns of population structure and geographic gradients in genetic diversity. Contrary to our expectations, we found an increase in genetic diversity near the species’ northern range edge. We found no notable contribution of climatic differences to genetic differentiation, indicating that any processes that might operate to differentiate populations based on temperature or precipitation are not affecting the putatively neutral loci in these analyses. Rather, these results support seed and pollen movement at limited distances relative to the species’ range and that this movement and the subsequent incorporation of immigrants into the local gene pool are not influenced by temperature or precipitation similarities among populations. We found that populations in the northern and southern parts of the range tended to belong to distinct genetic groups and that central and eastern populations were admixed between these two groups. This pattern could be the result of a past or current geographic barrier associated with the Columbia Plateau, or it could be the result of spread from separate sets of refugia after the last glacial maximum.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3