BayesCall: A model-based base-calling algorithm for high-throughput short-read sequencing

Author:

Kao Wei-Chun,Stevens Kristian,Song Yun S.

Abstract

Extracting sequence information from raw images of fluorescence is the foundation underlying several high-throughput sequencing platforms. Some of the main challenges associated with this technology include reducing the error rate, assigning accurate base-specific quality scores, and reducing the cost of sequencing by increasing the throughput per run. To demonstrate how computational advancement can help to meet these challenges, a novel model-based base-calling algorithm, BayesCall, is introduced for the Illumina sequencing platform. Being founded on the tools of statistical learning, BayesCall is flexible enough to incorporate various features of the sequencing process. In particular, it can easily incorporate time-dependent parameters and model residual effects. This new approach significantly improves the accuracy over Illumina's base-caller Bustard, particularly in the later cycles of a sequencing run. For 76-cycle data on a standard viral sample, phiX174, BayesCall improves Bustard's average per-base error rate by ∼51%. The probability of observing each base can be readily computed in BayesCall, and this probability can be transformed into a useful base-specific quality score with a high discrimination ability. A detailed study of BayesCall's performance is presented here.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

Cited by 69 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3