Competitive dewetting underlies site-specific binding of general anesthetics to GABA(A) receptors

Author:

Murlidaran Sruthi,Hénin JérômeORCID,Brannigan GraceORCID

Abstract

AbstractGABA(A) receptors are pentameric ligand-gated ion channels playing a critical role in the modulation of neuronal excitability. These inhibitory receptors, gated by γ-aminobutyric acid (GABA), can be potentiated and even directly activated by intravenous and inhalational anesthetics. Intersubunit cavities in the transmembrane domain have been consistently identified as putative binding sites by numerous experiment and simulation results. Synaptic GABA(A) receptors are predominantly found in a 2α:2β:1γ stoichiometry, with four unique inter-subunit interfaces. Experimental and computational results have suggested a perplexing specificity, given that cavity-lining residues are highly conserved, and the functional effects of general anesthetics are only weakly sensitive to most mutations of cavity residues. Here we use Molecular Dynamics simulations and thermodynamically rigorous alchemical free energy perturbation (AFEP) techniques to calculate affinities of the intravenous anesthetic propofol and the inhaled anesthetic sevoflurane to all intersubunit sites in a heteromeric GABA(A) receptor. We find that the best predictor of general anesthetic affinity for the intersubunit cavity sites is water displacement: combinations of anesthetic and binding site that displace more water molecules have higher affinities than those that displace fewer. The amount of water displacement is, in turn, a function of size of the general anesthetic, successful competition of the general anesthetic with water for the few hydrogen bonding partners in the site, and inaccessibility of the site to lipid acyl chains. The latter explains the surprisingly low affinity of GAs for the γα intersubunit site, which is missing a bulky methionine residue at the cavity entrance and can be occupied by acyl chains in the unbound state. Simulations also identify sevoflurane binding sites in the β subunit centers and in the pore, but predict that these are lower affinity than the intersubunit sites.SignificanceAfter over a century of research, it is established that general anesthetics interact directly with hydrophobic cavities in proteins. We still do not know why not all small hydrophobic molecules can act as general anesthetics, or why not all hydrophobic cavities bind these molecules. General anesthetics can even select among homologous sites on one critical target, the GABA(A) heteropentamer, although the origins of selectivity are unknown. Here we used rigorous free energy calculations to find that binding affinity correlates with the number of released water molecules, which in turn depends upon the lipid content of the cavity without bound anesthetic. Results suggest a mechanism that reconciles lipid-centered and protein-centered theories, and which can directly inform design of new anesthetics.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3