Co-translational folding allows misfolding-prone proteins to circumvent deep kinetic traps

Author:

Bitran Amir,Jacobs William M.,Zhai Xiadi,Shakhnovich Eugene

Abstract

Many large proteins suffer from slow or inefficient folding in vitro. Here, we provide evidence that this problem can be alleviated in vivo if proteins start folding co-translationally. Using an all-atom simulation-based algorithm, we compute the folding properties of various large protein domains as a function of nascent chain length, and find that for certain proteins, there exists a narrow window of lengths that confers both thermodynamic stability and fast folding kinetics. Beyond these lengths, folding is drastically slowed by non-native interactions involving C-terminal residues. Thus, co-translational folding is predicted to be beneficial because it allows proteins to take advantage of this optimal window of lengths and thus avoid kinetic traps. Interestingly, many of these proteins’ sequences contain conserved rare codons that may slow down synthesis at this optimal window, suggesting that synthesis rates may be evolutionarily tuned to optimize folding. Using kinetic modelling, we show that under certain conditions, such a slowdown indeed improves co-translational folding efficiency by giving these nascent chains more time to fold. In contrast, other proteins are predicted not to benefit from co-translational folding due to a lack of significant non-native interactions, and indeed these proteins’ sequences lack conserved C-terminal rare codons. Together, these results shed light on the factors that promote proper protein folding in the cell, and how biomolecular self-assembly may be optimized evolutionarily.Significance StatementMany proteins must adopt a specific structure in order to perform their functions, and failure to do so has been linked to disease. Although small proteins often fold rapidly and spontaneously to their native conformations, larger proteins are less likely to fold correctly due to the myriad incorrect arrangements they can adopt. Here, we show that this problem can be alleviated if proteins start folding while they are being translated, namely, built one amino acid at a time on the ribosome. This process of co-translational folding biases certain proteins away from misfolded states that tend to hinder spontaneous refolding. Signatures of unusually slow translation suggest that some of these proteins have evolved to fold co-translationally.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3