Abstract
ABSTRACTVertebrate head morphogenesis involves orchestrated cell growth and tissue movements of the mesoderm and neural crest to form the distinct craniofacial pattern. To better understand structural birth defects, it is important that we learn how these processes are controlled. Here, we examine this question during chick head morphogenesis using time-lapse imaging, computational modeling, and experiment. We find that head mesodermal cells are inherently dynamic in culture and alter cell behaviors in the presence of either ectoderm or neural crest cells. Mesodermal cells in vivo display large-scale whirling motions that rapidly transition to lateral, directed movements after neural crest cells emerge. Computer model simulations predict distinct changes in neural crest migration as the spatio-temporal growth profile of the mesoderm is varied. BrdU-labeling and photoconversion combined with cell density measurements then reveal non-uniform mesoderm growth in space and time. Chemical inhibition of head mesoderm proliferation or ablation of premigratory neural crest alters mesoderm growth and neural crest migration, implying a dynamic feedback between tissue growth and neural crest cell signaling to confer robustness to the system.Summary StatementDynamic feedback between tissue growth and neural crest cell migration ensures robust neural crest stream formation and head morphogenesis shown by time-lapse microscopy, mathematical modeling and embryo perturbations.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献