Sophisticated suction organs from insects living in raging torrents: Morphology and ultrastructure of the attachment devices of net-winged midge larvae (Diptera: Blephariceridae)

Author:

Kang VictorORCID,Johnston RichardORCID,van de Kamp ThomasORCID,Faragó Tomáš,Federle Walter

Abstract

2.AbstractSuction organs provide powerful yet dynamic attachments for many aquatic animals, including octopus, squid, remora, and clingfish. While the functional morphology of suction organs from various cephalopods and fishes has been investigated in detail, there are only few studies on such attachment devices in insects. Here we characterise the morphology, ultrastructure, and in vivo movements of the suction attachment organs of net-winged midge larvae (genus Liponeura) – aquatic insects that live on rocks in rapid alpine waterways where flow rates can reach 3 m s-1 – using scanning electron microscopy, laser confocal scanning microscopy, and X-ray computed micro-tomography (micro-CT). We identified structural adaptations important for the function of the suction attachment organs from L. cinerascens and L. cordata. First, a dense array of spine-like microtrichia covering each suction disc comes into contact with the substrate upon attachment. Similar hairy structures have been found on the contact zones of suction organs from octopus, clingfish, and remora fish. These structures are thought to contribute to the seal and to provide increased shear force resistance in high-drag environments. Second, specialised rim microtrichia at the suction disc periphery form a continuous ring in close contact with a surface and may serve as a seal on a variety of surfaces. Third, a V-shaped cut on the suction disc (the V-notch) is actively peeled open via two cuticular apodemes inserting into its flanks. The apodemes are attached to dedicated V-notch opening muscles, thereby providing a unique detachment mechanism. The complex cuticular design of the suction organs, along with specialised muscles that attach to them, allows blepharicerid larvae to generate powerful attachments which can withstand strong hydrodynamic forces and quickly detach for locomotion. Our findings could be applied to bio-inspired attachment devices that perform well on a wide range of surfaces.

Publisher

Cold Spring Harbor Laboratory

Reference55 articles.

1. The Net-Winged Midges (Blepharoceridae) of North America;Proc Calif Acad Sci,1903

2. Notes on the Life-history and Structure of Blepharocera capitata Loew;Ent News,1900

3. Komárek J. Die Morphologie und Physiologie der Haftscheiben der Blepharoceridenlarven. Sitzungsberichte der Königlich Böhmischen Gesellschaft der Wissenschaften II Cl 1914;1–28

4. Beschreibung einiger neuer Gattungen der europäischen Dipterenfauna;Stettiner Entomol Zeitung,1844

5. Life history variability of a grazing stream insect (Liponeura cinerascens minor; Diptera: Blephariceridae;Freshw Biol,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3