Effect of Cytoplasmic Viscosity on Red Blood Cell Migration in Small Arteriole-level Confinements

Author:

Saadat AmirORCID,Guido Christopher J.,Shaqfeh Eric S. G.

Abstract

The dynamics of red blood cells in small arterioles are important as these dynamics affect many physiological processes such as hemostasis and thrombosis. However, studying red blood cell flows via computer simulations is challenging due to the complex shapes and the non-trivial viscosity contrast of a red blood cell. To date, little progress has been made studying small arteriole flows (20-40μm) with a hematocrit (red blood cell volume fraction) of 10-20% and a physiological viscosity contrast. In this work, we present the results of large-scale simulations that show how the channel size, viscosity contrast of the red blood cells, and hematocrit affect cell distributions and the cell-free layer in these systems. We utilize a massively-parallel immersed boundary code coupled to a finite volume solver to capture the particle resolved physics. We show that channel size qualitatively changes how the cells distribute in the channel. Our results also indicate that at a hematocrit of 10% that the viscosity contrast is not negligible when calculating the cell free layer thickness. We explain this result by comparing lift and collision trajectories of cells at different viscosity contrasts.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3