Selection-based model of prokaryote pangenomes

Author:

Domingo-Sananes Maria RosaORCID,McInerney James O.ORCID

Abstract

AbstractThe genomes of different individuals of the same prokaryote species can vary widely in gene content, displaying different proportions of core genes, which are present in all genomes, and accessory genes, whose presence varies between genomes. Together, these core and accessory genes make up a species’ pangenome. The reasons behind this extensive diversity in gene content remain elusive, and there is an ongoing debate about the contribution of accessory genes to fitness, that is, whether their presence is on average advantageous, neutral, or deleterious. In order to explore this issue, we developed a mathematical model to simulate the gene content of prokaryote genomes and pangenomes. Our model focuses on testing how the fitness effects of genes and their rates of gene gain and loss would affect the properties of pangenomes. We first show that pangenomes with large numbers of low-frequency genes can arise due to the gain and loss of neutral and nearly neutral genes in a population. However, pangenomes with large numbers of highly beneficial, low-frequency genes can arise as a consequence of genotype-by-environment interactions when multiple niches are available to a species. Finally, pangenomes can arise, irrespective of the fitness effect of the gained and lost genes, as long as gene gain and loss rates are high. We argue that in order to understand the contribution of different mechanisms to pangenome diversity, it is crucial to have empirical information on population structure, gene-by-environment interactions, the distributions of fitness effects and rates of gene gain and loss in different prokaryote groups.

Publisher

Cold Spring Harbor Laboratory

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3