Configuration of DNA strands and mechanism of strand exchange in the Hin invertasome as revealed by analysis of recombinant knots.

Author:

Heichman K A,Moskowitz I P,Johnson R C

Abstract

The Hin recombinase of Salmonella normally catalyzes a site-specific DNA inversion reaction that is very efficient when the Fis protein and a recombinational enhancer sequence are present. The mechanism of this recombination reaction has been investigated by analyzing the formation and structure of knots generated in different plasmid substrates in vitro. Hin seldom knots the wild-type substrate under standard recombination conditions. However, we show that increasing the length of DNA between the recombination sites and the enhancer and changing the sequence of the core nucleotides where strand exchange occurs increases the efficiency of the knotting reaction. The structure of the knots generated by different mutant substrates strongly supports a model involving a unique configuration of DNA strands at synapsis and DNA strand exchange mediated by rotation of one set of Hin subunits after DNA cleavage. Analysis of the stereostructure of the knots by electron microscopy of RecA-coated DNA molecules demonstrates that the direction of subunit rotation is exclusively clockwise. Because multiple subunit rotations generating knotted molecules do not occur efficiently when the enhancer is located in its native position, we suggest that the enhancer normally remains associated with the two recombination sites in the invertasome structure during strand exchange to limit strand rotation once it has been initiated. Under certain conditions, however, complex knots are formed that are probably the result of the premature release of the enhancer and multiple, unrestrained subunit exchanges.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3