Genetic pleiotropy between mood disorders, metabolic, and endocrine traits in a multigenerational pedigree

Author:

Kember Rachel L.,Hou Liping,Ji Xiao,Andersen Lars H.,Ghorai Arpita,Estrella Lisa N.,Almasy Laura,McMahon Francis J.,Brown Christopher,Bućan Maja

Abstract

AbstractBipolar disorder (BD) is a mental disorder characterized by alternating periods of depression and mania. Individuals with BD have higher levels of early mortality than the general population, and a substantial proportion of this may be due to increased risk for comorbid diseases. Recent evidence suggests that pleiotropy, either in the form of a single risk-allele or the combination of multiple loci genome-wide, may underlie medical comorbidity between traits and diseases. To identify the molecular events that underlie BD and related medical comorbidities, we generated imputed whole genome sequence (WGS) data using a population specific reference panel, for an extended multigenerational Old Order Amish pedigree (400 family members) segregating BD and related disorders. First, we investigated all putative disease-causing variants at known Mendelian disease loci present in this pedigree. Second, we performed genomic profiling using polygenic risk scores to establish each individual's risk for several complex diseases. To explore the contribution of disease genes to BD we performed gene-based and variant-based association tests for BD, and found that Mendelian disease genes are enriched in the top results from both tests (OR=20.3, p=1×10−3; OR=2.2, p=1×10−2). We next identified a set of Mendelian variants that co-occur in individuals with BD more frequently than their unaffected family members, including the R3527Q mutation inAPOBassociated with hypercholesterolemia. Using polygenic risk scores, we demonstrated that BD individuals from this pedigree were enriched for the same common risk-alleles for BD as in the general population (β=0.416, p=6×10−4). Furthermore, in the extended Amish family we find evidence for a common genetic etiology between BD and clinical autoimmune thyroid disease (p=1×10−4), diabetes (p=1×10−3), and lipid traits such as triglyceride levels (p=3×10−4). We identify genomic regions that contribute to the differences between BD individuals and unaffected family members by calculating local genetic risk for independent LD blocks. Our findings provide evidence for the extensive genetic pleiotropy that can drive epidemiological findings of comorbidities between diseases and other complex traits. Identifying such patterns may enable the subtyping of complex diseases and facilitate our understanding of the genetic mechanisms underlying phenotypic heterogeneity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3