A dynamical model of the laminar BOLD response

Author:

Havlicek MartinORCID,Uludag KamilORCID

Abstract

AbstractHigh-resolution functional magnetic resonance imaging (fMRI) using blood oxygenation dependent level-dependent (BOLD) signal is an increasingly popular tool to non-invasively examine neuronal processes at the mesoscopic level. However, as the BOLD signal stems from hemodynamic changes, its temporal and spatial properties do not match those of the underlying neuronal activity. In particular, the laminar BOLD response (LBR), commonly measured with gradient-echo (GE) MRI sequence, is confounded by non-local changes in deoxygenated hemoglobin and cerebral blood volume propagated within intracortical ascending veins, leading to a unidirectional blurring of the neuronal activity distribution towards the cortical surface. Here, we present a new cortical depth-dependent model of the BOLD response based on the principle of mass conservation, which takes the effect of ascending (and pial) veins on the cortical BOLD responses explicitly into account. It can be used to dynamically model cortical depth profiles of the BOLD signal as a function of various baseline- and activity-related physiological parameters for any spatiotemporal distribution of neuronal changes. We demonstrate that the commonly observed spatial increase of LBR is mainly due to baseline blood volume increase towards the surface. In contrast, an occasionally observed local maximum in the LBR (i.e. the so-called “bump”) is mainly due to spatially inhomogeneous neuronal changes rather than locally higher baseline blood volume. In addition, we show that the GE-BOLD signal laminar point-spread functions, representing the signal leakage towards the surface, depend on several physiological parameters and on the level of neuronal activity. Furthermore, even in the case of simultaneous neuronal changes at each depth, inter-laminar delays of LBR transients are present due to the ascending vein. In summary, the model provides a conceptual framework for the biophysical interpretation of common experimental observations in high-resolution fMRI data. In the future, the model will allow for deconvolution of the spatiotemporal hemodynamic bias of the LBR and provide an estimate of the underlying laminar excitatory and inhibitory neuronal activity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3