Abstract
AbstractClass A G protein-coupled receptors (GPCRs) influence virtually every aspect of human physiology. GPCR activation is an allosteric process that links agonist binding to G protein recruitment, with the hallmark outward movement of transmembrane helix 6 (TM6). However, what leads to TM6 movement and the key residue-level changes of this trigger remain less well understood. Here, by analyzing over 230 high-resolution structures of class A GPCRs, we discovered a modular, universal GPCR activation pathway that unites previous findings into a common activation mechanism, directly linking the bottom of ligand-binding pocket with G protein-coupling region. We suggest that the modular nature of the universal GPCR activation pathway allowed for the decoupling of the evolution of the ligand binding site, G protein binding region and the residues important for receptor activation. Such an architecture might have facilitated GPCRs to emerge as a highly successful family of proteins for signal transduction in nature.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献