Cross-feeding modulates the rate and mechanism of antibiotic resistance evolution in a model microbial community of Escherichia coli and Salmonella enterica

Author:

Adamowicz Elizabeth M.ORCID,Muza Michaela A.,Chacón Jeremey M.ORCID,Harcombe William R.ORCID

Abstract

AbstractWith antibiotic resistance rates on the rise, it is critical to understand how microbial species interactions influence the evolution of resistance. We have previously shown that in obligate mutualisms the survival of any one species (regardless of its intrinsic resistance) is contingent on the resistance of its cross-feeding partners, setting the community antibiotic tolerance at that of the ‘weakest link’ species. In this study, we extended that hypothesis to test whether obligate cross-feeding would limit the extent and mechanisms of antibiotic resistance evolution. In both rifampicin and ampicillin treatments, we observed that resistance evolved more slowly in obligate co-cultures of E. coli and S. enterica than in monocultures. While we observed similar mechanisms of resistance arising under rifampicin selection, under ampicillin selection different resistance mechanisms arose in co-cultures and monocultures. In particular, mutations in an essential cell division protein, ftsI, arose in S. enterica only in co-culture. A simple mathematical model demonstrated that reliance on a partner is sufficient to slow the rate of adaptation, and can change the distribution of adaptive mutations that are acquired. Our results demonstrate that cooperative metabolic interactions can be an important modulator of resistance evolution in microbial communities.Significance statementLittle is known about how ecological interactions between bacteria influence the evolution of antibiotic resistance. We tested the impact of metabolic interactions on resistance evolution in an engineered two-species bacterial community. Through experimental and modeling work, we found that obligate metabolic interdependency slows the rate of resistance acquisition, and can change the type and magnitude of resistance mutations that evolve. This work suggests that resistance evolution may be slowed by targeting both a pathogen and its metabolic partners with antibiotics. Additionally, we showed that community context can generate novel trajectories through which antibiotic resistance evolves.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3