Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth.

Author:

Roberts R L,Fink G R

Abstract

Diploid Saccharomyces cerevisiae strains starved for nitrogen undergo a developmental transition from a colonial form of growth to a filamentous pseudohyphal form. This dimorphism requires a polar budding pattern and elements of the MAP kinase signal transduction pathway essential for mating pheromone response in haploids. We report here that haploid strains exhibit an invasive growth behavior with many similarities to pseudohyphal development, including filament formation and agar penetration. Haploid filament formation depends on a switch from an axial to a bipolar mode of bud site selection. Filament formation is distinct from agar penetration in both haploids and diploids. We find that the same components of the MAP kinase cascade necessary for diploid pseudohyphal development (STE20, STE11, STE7, and STE12) are also required for both filament formation and agar penetration in haploids. Thus, haploid yeast cells can enter either of two developmental pathways: mating or invasive growth, both of which depend on elements of a single MAP kinase cascade. Our results provide a novel developmental model to study the dynamics of signal transduction, with implications for higher eukaryotes.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3