Data-driven spectral analysis for coordinative structures in periodic systems with unknown and redundant dynamics

Author:

Fujii KeisukeORCID,Takeishi Naoya,Kibushi Benio,Kouzaki Motoki,Kawahara Yoshinobu

Abstract

AbstractLiving organisms dynamically and flexibly operate a great number of components. As one of such redundant control mechanisms, low-dimensional coordinative structures among multiple components have been investigated. However, structures extracted from the conventional statistical dimensionality reduction methods do not reflect dynamical properties in principle. Here we regard coordinative structures in biological periodic systems with unknown and redundant dynamics as a nonlinear limit-cycle oscillation, and apply a data-driven operator-theoretic spectral analysis, which obtains dynamical properties of coordinative structures such as frequency and phase from the estimated eigenvalues and eigenfunctions of a composition operator. First, from intersegmental angles during human walking, we extracted the speed-independent harmonics of gait frequency. Second, we discovered the speed-dependent time-evolving behaviors of the phase on the conventional low-dimensional structures by estimating the eigenfunctions. Our approach contributes to the understanding of biological periodic phenomena with unknown and redundant dynamics from the perspective of nonlinear dynamical systems.

Publisher

Cold Spring Harbor Laboratory

Reference78 articles.

1. N. Bernstein , The coordination and regulation of movement, Pergamon Press, London, 1967.

2. The challenges ahead for bio-inspired ‘soft’ robotics;Communications of the ACM,2012

3. Soft robotics: new perspectives for robot bodyware and control;Frontiers in Bioengineering and Biotechnology,2014

4. Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment

5. Switching adaptability in human-inspired sidesteps: A minimal model;Frontiers in Human Neuroscience,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3