Overdispersed gene expression characterizes schizophrenic brains

Author:

Huang Guangzao,Osorio DanielORCID,Guan Jinting,Ji Guoli,Cai James J.ORCID

Abstract

AbstractSchizophrenia (SCZ) is a severe, highly heterogeneous psychiatric disorder with varied clinical presentations. The polygenic genetic architecture of SCZ makes identification of causal variants daunting. Gene expression analyses have shown that SCZ may result in part from transcriptional dysregulation of a number of genes. However, most of these studies took the commonly used approach—differential gene expression analysis, assuming people with SCZ are a homogenous group, all with similar expression levels for any given gene. Here we show that the overall gene expression variability in SCZ is higher than that in an unaffected control (CTL) group. Specifically, we applied the test for equality of variances to the normalized expression data generated by the CommonMind Consortium (CMC) and identified 87 genes with significantly higher expression variances in the SCZ group than the CTL group. One of the genes with differential variability, VEGFA, encodes a vascular endothelial growth factor, supporting a vascular-ischemic etiology of SCZ. We also applied a Mahalanobis distance-based test for multivariate homogeneity of group dispersions to gene sets and identified 19 functional gene sets with higher expression variability in the SCZ group than the CTL group. Several of these gene sets are involved in brain development (e.g., development of cerebellar cortex, cerebellar Purkinje cell layer and neuromuscular junction), supporting that structural and functional changes in the cortex cause SCZ. Finally, using expression variability QTL (evQTL) analysis, we show that common genetic variants contribute to the increased expression variability in SCZ. Our results reveal that SCZ brains are characterized by overdispersed gene expression, resulting from dysregulated expression of functional gene sets pertaining to brain development, necrotic cell death, folic acid metabolism, and several other biological processes. Using SCZ as a model of complex genetic disorders with a heterogeneous etiology, our study provides a new conceptual framework for variability-centric analyses. Such a framework is likely to be important in the era of personalized medicine. (313 words)

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3