Abstract
AbstractPhase locking of neural firing is ubiquitously observed in the brain and occurs when neurons fire at a particular phase of a periodic signal. Here we study in detail how spikes of single neurons can simultaneously lock to multiple distinct frequencies at the example of p-type electroreceptor afferents in the electrosensory system of the Gymnotiform weakly electric fishApteronotus leptorhynchus. We identify key elements for multiple frequency locking, study its determining factors and limits, and provide concise mathematical models reproducing our main findings. Our findings provide another example how rate and temporal codes can coexist and complement each other in single neurons, and demonstrate that sensory coding in p-type electroreceptor afferents provides a much richer representation of the sensory environment than commonly assumed. Since the underlying mechanisms are not specific to the electrosensory system, our results could provide the basis for studying multiple-frequency locking in other systems.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献