Direct-fit to nature: an evolutionary perspective on biological (and artificial) neural networks

Author:

Hasson UriORCID,Nastase Samuel A.ORCID,Goldstein Ariel

Abstract

AbstractEvolution is a blind fitting process by which organisms, over generations, adapt to the niches of an ever-changing environment. Does the mammalian brain use similar brute-force fitting processes to learn how to perceive and act upon the world? Recent advances in training deep neural networks has exposed the power of optimizing millions of synaptic weights to map millions of observations along ecologically relevant objective functions. This class of models has dramatically outstripped simpler, more intuitive models, operating robustly in real-life contexts spanning perception, language, and action coordination. These models do not learn an explicit, human-interpretable representation of the underlying structure of the data; rather, they use local computations to interpolate over task-relevant manifolds in a high-dimensional parameter space. Furthermore, counterintuitively, over-parameterized models, similarly to evolutionary processes, can be simple and parsimonious as they provide a versatile, robust solution for learning a diverse set of functions. In contrast to traditional scientific models, where the ultimate goal is interpretability, over-parameterized models eschew interpretability in favor of solving real-life problems or tasks. We contend that over-parameterized blind fitting presents a radical challenge to many of the underlying assumptions and practices in computational neuroscience and cognitive psychology. At the same time, this shift in perspective informs longstanding debates and establishes unexpected links with evolution, ecological psychology, and artificial life.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3