Abstract
We present Labkit, a user-friendly Fiji plugin for the segmentation of microscopy image data. It offers easy to use manual and automated image segmentation routines that can be rapidly applied to single- and multi-channel images as well as to timelapse movies in 2D or 3D. Labkit is specifically designed to work efficiently on big image data and enables users of consumer laptops to conveniently work with multiple-terabyte images. This efficiency is achieved by using ImgLib2 and BigDataViewer as the foundation of our software. Furthermore, memory efficient and fast random forest based pixel classification inspired by the Waikato Environment for Knowledge Analysis (Weka) is implemented. Optionally we harness the power of graphics processing units (GPU) to gain additional runtime performance. Labkit is easy to install on virtually all laptops and workstations. Additionally, Labkit is compatible with high performance computing (HPC) clusters for distributed processing of big image data. The ability to use pixel classifiers trained in Labkit via the ImageJ macro language enables our users to integrate this functionality as a processing step in automated image processing workflows. Last but not least, Labkit comes with rich online resources such as tutorials and examples that will help users to familiarize themselves with available features and how to best use Labkit in a number of practical real-world use-cases.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献