Genetic map of regional sulcal morphology in the human brain

Author:

Sun Benjamin B.ORCID,Loomis Stephanie J.ORCID,Pizzagalli FabrizioORCID,Shatokhina NataliaORCID,Painter Jodie N.ORCID,Foley Christopher N.ORCID,Team Biogen Biobank,Jensen Megan E.ORCID,McLaren Donald G.ORCID,Chintapalli Sai SpandanaORCID,Zhu Alyssa H.ORCID,Dixon DanielORCID,Islam TasfiyaORCID,Gari Iyad BaORCID,Runz HeikoORCID,Medland Sarah E.ORCID,Thompson Paul M.ORCID,Jahanshad NedaORCID,Whelan Christopher D.ORCID

Abstract

AbstractThe human brain is a complex organ underlying many cognitive and physiological processes, affected by a wide range of diseases. Genetic associations with macroscopic brain structure are emerging, providing insights into genetic sources of brain variability and risk for functional impairments and disease. However, specific associations with measures of local brain folding, associated with both brain development and decline, remain under-explored. Here we carried out detailed large-scale genome-wide associations of regional brain cortical sulcal measures derived from magnetic resonance imaging data of 40,169 individuals in the UK Biobank. Combining both genotyping and whole-exome sequencing data (∼12 million variants), we discovered 388 regional brain folding associations across 77 genetic loci at p<5×10−8, which replicated at p<0.05. We found genes in associated loci to be independently enriched for expression in the cerebral cortex, neuronal development processes and differential regulation in early brain development. We integrated coding associations and brain eQTLs to refine genes for various loci and demonstrated shared signal in the pleiotropic KCNK2 locus with a cortex-specific KCNK2 eQTL. Genetic correlations with neuropsychiatric conditions highlighted emerging patterns across distinct sulcal parameters and related phenotypes. We provide an interactive 3D visualisation of our summary associations, making complex association patterns easier to interpret, and emphasising the added resolution of regional brain analyses compared to global brain measures. Our results offer new insights into the genetic architecture underpinning brain folding and provide a resource to the wider scientific community for studies of pathways driving brain folding and their role in health and disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3