Abstract
AbstractThe expansion of tropical mosquito habitats and associated arboviruses is a risk for human health, and it thus becomes fundamental to identify new antiviral strategies. In this study we employ a new approach to elucidate the composition of the ribonucleoproteins (RNPs) of a prototypical arbovirus called Sindbis (SINV). SINV RNPs contain 453 cellular and 6 viral proteins, many of these proteins are nuclear in uninfected cells and redistribute to the cytoplasm upon infection. These findings suggest that SINV RNAs act as ’spiderwebs’, capturing host factors required for viral replication and gene expression in the cytoplasm. Functional perturbation of several of these host proteins causes profound effects in virus infection, as illustrated here with the tRNA ligase complex. Moreover, inhibition of viral RNP components with available drugs hampers the infection of a wide range of viruses, opening new avenues for the development of broad-spectrum therapies.Research highlightsSINV RNA interactome includes 453 cellular and 6 viral proteins.Nuclear RBPs that interact with SINV RNA are selectively redistributed to the cytoplasm upon infectionThe tRNA ligase complex plays major regulatory roles in SINV and SARS-CoV- 2 replicationThe SINV RNA interactome is enriched in pan-viral regulators with therapeutic potential.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献