Kv1 channels regulate variations in spike patterning and temporal reliability in the avian cochlear nucleus angularis

Author:

Baldassano James F.,MacLeod Katrina M.ORCID

Abstract

AbstractDiverse physiological phenotypes in a neuronal population can broaden the range of computational capabilities within a brain region. The avian cochlear nucleus angularis (NA) contains a heterogeneous population of neurons whose variation in intrinsic properties results in electrophysiological phenotypes with a range of sensitivities to temporally modulated input. The low-threshold potassium conductance (GKLT) is a key feature of neurons involved in fine temporal structure coding for sound localization but a role for these channels in intensity or spectrotemporal coding has not been established. To determine whether GKLT affects the phenotypical variation and temporal properties of NA neurons, we applied dendrotoxin (DTX), a potent antagonist of Kv1-type potassium channels, to chick brain stem slices in vitro during whole-cell patch clamp recordings. We found a cell-type specific subset of NA neurons were sensitive to DTX: single-spiking NA neurons were most profoundly affected, as well as a subset of tonic firing neurons. Both tonic I (phasic onset bursting) and tonic II (delayed firing) neurons showed DTX sensitivity in their firing rate and phenotypical firing pattern. Tonic III neurons were unaffected. Spike time reliability and fluctuation sensitivity measured in DTX-sensitive NA neurons was also reduced with DTX. Finally, DTX reduced spike threshold adaptation in these neurons, suggesting that GKLT contributes to the temporal properties that allow coding of rapid changes in the inputs to NA neurons. These results suggest that variation in Kv1 channel expression may be a key factor in functional diversity in the avian cochlear nucleus.New and noteworthyThe dendrotoxin-sensitive voltage-gated potassium conductance typically associated with neuronal coincidence detection the timing pathway for sound localization is demonstrated to affect spiking patterns and temporal input sensitivity in the intensity pathway in the avian auditory brain stem. The Kv1-family channels appear to be present in a subset of cochlear nucleus angularis neurons, regulate spike threshold dynamics underlying high-pass membrane filtering, and contribute to intrinsic firing diversity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3