The mechanosensitive TRPV2 calcium channel controls human melanoma invasiveness and metastatic potential

Author:

Shoji Kenji F.ORCID,Bayet Elsa,Devedec Dahiana Le,Mallavialle AudeORCID,Marionneau-Lambot SéverineORCID,Leverrier-Penna SabrinaORCID,Rambow FlorianORCID,Perret RaulORCID,Joussaume Aurélie,Viel Roselyne,Fautrel AlainORCID,Khammari AmirORCID,Constantin BrunoORCID,Tartare-Deckert SophieORCID,Penna AubinORCID

Abstract

ABSTRACTDiscovery of therapeutic targets against metastasis is of primary importance since being the main cause of cancer-related death. Melanoma is a highly aggressive cancer endowed with a unique capacity of rapidly metastasizing. Deregulation of calcium homeostasis has been involved in numerous cellular metastatic behaviors, although the molecular determinants supporting these processes often remain unclear. Here, we evidenced a prominent expression of the plasma membrane TRPV2 calcium channel as a distinctive feature of melanoma tumors, directly related to melanoma metastatic progression and dissemination. In vitro as well as in vivo, TRPV2 activity was sufficient to confer both migratory and invasive phenotypes to non-invasive melanoma cells, while conversely upon TRPV2 silencing, highly metastatic melanoma cells failed to retain their malignant behaviors. We established a model whereupon activation of the mechanosensitive TRPV2 channel, localized in highly dynamic nascent adhesion clusters, directly regulates calpain-dependent cleavage of the adhesive protein talin together with F-actin network. By operating at the crossroad of the tumor microenvironment and the intracellular machinery, mechanosensitive TRPV2 channel controls melanoma cells aggressiveness. Finally in human melanoma tumor samples, TRPV2 overexpression represents a molecular marker of advanced malignancy and bad prognosis, highlighting a new therapeutic option for migrastatics in the treatment of metastatic melanoma.SignificanceOne essential feature of metastatic cells is enhanced motility and invasiveness. This study evidences TRPV2 channel control over metastatic melanoma invasiveness, highlights new migration regulatory mechanisms, and reveals this channel as a biomarker and migrastatic target for the treatment of advanced melanoma.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3