Ultrasound-mediated delivery of novel tau-specific monoclonal antibody enhances brain uptake but not therapeutic efficacy

Author:

Bajracharya RinieORCID,Cruz EstebanORCID,Götz JürgenORCID,Nisbet Rebecca M.ORCID

Abstract

AbstractTau-specific immunotherapy is an attractive therapeutic strategy for the treatment of Alzheimer’s disease and other tauopathies. However, targeting tau effectively remains a considerable challenge due to the restrictive nature of the blood-brain barrier (BBB), which excludes 99.9% of peripherally administered antibodies. We have previously shown that the delivery of tau-specific monoclonal antibody (mAb) with low-intensity scanning ultrasound in combination with intravenously injected microbubbles (SUS+MB) increases the passage of IgG antibodies into the brain. SUS+MB transiently opens tight junctions to allow paracellular transport, but also facilitates transcellular transport, particularly for larger cargoes. However, therapeutic efficacy after enhanced brain delivery has not been explored. To assess whether ultrasound-mediated delivery of tau-specific mAbs leads to an enhanced therapeutic response, K369I tau transgenic K3 mice were passively immunised once weekly for 12 weeks with a novel mAb, RNF5, in combination with SUS+MB. While none of the treatment arms improved behaviour or motor functions in these mice, we found that both RNF5 and SUS+MB treatments on their own reduced tau pathology, but, surprisingly, the combination of both (RNF5+SUS+MB) did not achieve an additive reduction in tau pathology. This was despite observing increased antibody penetration in the brain. Interestingly, a significant fraction of the antibody in the combination treatment was visualized in brain endothelial cells, suggesting that paracellular transport may not be the preferred uptake mechanism for RNF5. Taken altogether, more research is warranted to develop SUS+MB as a delivery modality for anti-tau antibodies.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3