Contribution of cytoplasm viscoelastic properties to mitotic spindle positioning

Author:

Xie Jing,Najafi Javad,Borgne Rémi Le,Verbavatz Jean-Marc,Durieu Catherine,Sallé Jeremy,Minc NicolasORCID

Abstract

ABSTRACTCells are filled with macromolecules and polymer networks that set scale-dependent viscous and elastic properties to the cytoplasm. Although the role of these parameters in molecular diffusion, reaction kinetics and cellular biochemistry is being increasingly recognized, their contributions to the motion and positioning of larger organelles, such as mitotic spindles for cell division remain unknown. Here, using magnetic tweezers to displace and rotate mitotic spindles in living embryos, we uncovered that the cytoplasm can impart viscoelastic reactive forces that move spindles, or passive objects with similar size, back to their original position. These forces are independent of cytoskeletal force generators, yet reach hundreds of piconewtons and scale with cytoplasm crowding. Spindle motion shears and fluidizes the cytoplasm, dissipating elastic energy and limiting spindle recoils with functional implications for asymmetric and oriented divisions. These findings suggest that bulk cytoplasm material properties may constitute important control elements for the regulation of division positioning and cellular organization.Significance StatementThe regulation of mitotic spindle positioning is a key process for tissue architecture, embryo development and stem cells. To date, most models have assumed that spindles are positioned by forces exerted by polar cytoskeleton networks, like microtubule asters or acto-myosin bundles. Here, using in situ magnetic tweezers to apply calibrated forces and torques to mitotic spindles in live dividing sea urchin cells, we found that the viscoelastic properties of the cytoplasm medium in which spindles are embedded can hold spindles in place, and move them back if their original position is perturbed. These viscoelastic forces are large and may significantly participate in the force balance that position and orient mitotic spindles in many cell types.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3