Identification and validation of a non-genetically encoded vulnerability to XPO1 inhibition in malignant rhabdoid tumors – expanding patient-driven discovery beyond the N-of-1

Author:

Marks Lianna J.,Diolaiti Daniel,Mundi Prabhjot,Gaviria Ervin S.,Rainey Allison R.,Yamashiro Darrell J.,Fazlollahi Ladan,Hosoi Hajime,Katsumi Yoshiki,Kuwahara Yasumichi,Dela Cruz Filemon S.ORCID,Califano AndreaORCID,Kung Andrew L.

Abstract

AbstractMalignant rhabdoid tumors (MRTs) are rare, aggressive pediatric solid tumors, characterized by a 22q11 deletion that inactivates the SMARCB1 gene. Outcomes remain poor despite multimodality treatment. MRTs are among the most genomically stable cancers and lack therapeutically targetable genetic mutations. We utilized metaVIPER, an extension of the Virtual Inference of Protein-activity by Enriched Regulon (VIPER) algorithm, to computationally infer activated druggable proteins in the tumor of an eight month old patient and then expanded the analysis to TCGA and TARGET cohorts. In vitro studies were performed on a panel of MRT and atypical teratoid/rhabdoid tumor cell lines. Two patient-derived xenograft (PDX) mouse models of MRT were used for in vivo efficacy studies. MetaVIPER analysis from the patient’s tumor identified significantly high inferred activity of nuclear export protein Exportin-1 (XPO1). Expanded metaVIPER analysis of TCGA and TARGET cohorts revealed consistent elevations in XPO1 inferred activity in MRTs compared to other cancer types. All MRT cell lines demonstrated baseline activation of XPO1. MRT cell lines demonstrated in vitro sensitivity to the XPO1 inhibitor, selinexor which led to cell cycle arrest and induction of apoptosis. Targeted inhibition of XPO1 in patient-derived xenograft models of MRT using selinexor resulted in abrogation of tumor growth. Selinexor demonstrates efficacy in preclinical models of MRT. These results support investigation of selinexor in a phase II study in children with MRT and illustrate the importance of an N-of-1 approach in driving discovery beyond the single patient.Statement of Translational RelevanceWe describe the patient-driven discovery of XPO1 activation as a non-genetically encoded vulnerability in MRTs. The application of metaVIPER analysis to tumors lacking actionable oncogenic alterations represents a novel approach for identifying potential therapeutic targets and biomarkers of response. Our preclinical validation of selinexor confirms XPO1 inhibition as a promising therapeutic strategy for the treatment of MRT.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3