Clinical implementation of a machine learning system to detect deteriorating patients reduces time to response and intervention

Author:

Brufau Santiago RomeroORCID,Rosenthal JacobORCID,Kautz Jordan,Storlie Curtis,Gaines Kim,Nagel Jill,VanDeusen Adam,Johnson Matthew,Hickman Joel,Hardin Dale,Schmidt Julie,Dankbar Gene,Huddleston Jeanne

Abstract

AbstractIntroductionAcute physiological deterioration is a major contributor to in-hospital morbidity and mortality. Early detection and intervention of deteriorating patients is key to improving patient outcomes. Prior research has demonstrated the effectiveness of Early Warning Systems and other algorithmic approaches in automatically identifying these patients from passively monitoring vital signs.MethodsIn this work, we conduct a prospective pilot study of clinical deployment of the Mayo Clinic Bedside Patient Rescue (BPR) system using an escalating alerting logic enabled by machine learning. Among four units where the BPR system was deployed, time to response and time to intervention for deteriorating patients were significantly reduced relative to matched control units.ResultsIn pilot units, time to response decreased by 35.4% (from 63.2 minutes to 40.8 minutes) and time to intervention decreased by 48.5% (from 106.3 minutes to 55.9 minutes). No significant differences were observed in counterbalance metrics of mortality, ICU transfer rate, and Rapid Response Team activation rate. Furthermore, the automated alerting system was well-received by clinicians participating in the pilot study, as assessed by survey.DiscussionThese results demonstrate a successful clinical deployment of a practice-changing machine learning alert system with demonstrable impact on improving patient care.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3