Going Beyond the Point Neuron: Active Dendrites and Sparse Representations for Continual Learning

Author:

Grewal Karan,Forest Jeremy,Cohen Benjamin P.,Ahmad SubutaiORCID

Abstract

AbstractBiological neurons integrate their inputs on dendrites using a diverse range of non-linear functions. However the majority of artificial neural networks (ANNs) ignore biological neurons’ structural complexity and instead use simplified point neurons. Can dendritic properties add value to ANNs? In this paper we investigate this question in the context of continual learning, an area where ANNs suffer from catastrophic forgetting (i.e., ANNs are unable to learn new information without erasing what they previously learned). We propose that dendritic properties can help neurons learn context-specific patterns and invoke highly sparse context-specific subnetworks. Within a continual learning scenario, these task-specific subnetworks interfere minimally with each other and, as a result, the network remembers previous tasks significantly better than standard ANNs. We then show that by combining dendritic networks with Synaptic Intelligence (a biologically motivated method for complex weights) we can achieve significant resilience to catastrophic forgetting, more than either technique can achieve on its own. Our neuron model is directly inspired by the biophysics of sustained depolarization following dendritic NMDA spikes. Our research sheds light on how biological properties of neurons can be used to solve scenarios that are typically impossible for traditional ANNs to solve.

Publisher

Cold Spring Harbor Laboratory

Reference54 articles.

1. S. Ahmad and J. Hawkins . How do neurons operate on sparse distributed representations? A mathematical theory of sparsity, neurons and active dendrites. ArXiv preprint, 2016.

2. S. Ahmad and L. Scheinkman . How can we be so dense? The benefits of using highly sparse representations. ArXiv preprint, 2019.

3. The decade of the dendritic NMDA spike

4. S. D. Antic , M. Hines , and W. W. Lytton . Embedded ensemble encoding hypothesis: The role of the “Prepared” cell, sep 2018. ISSN 10974547.

5. D. Attwell and S. B. Laughlin . An energy budget for signaling in the grey matter of the brain, oct 2001. ISSN 0271678X.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3