Techniques to Produce and Evaluate Realistic Multivariate Synthetic Data

Author:

Heine JohnORCID,Fowler Erin E.E.ORCID,Berglund Anders,Schell Michael J.,Eschrich StevenORCID

Abstract

AbstractBackgroundProper data modeling in biomedical research requires sufficient data for exploration and reproducibility purposes. A limited sample size can inhibit objective performance evaluation.ObjectiveWe are developing a synthetic population (SP) generation technique to address the limited sample size condition. We show how to estimate a multivariate empirical probability density function (pdf) by converting the task to multiple one-dimensional (1D) pdf estimations.MethodsKernel density estimation (KDE) in 1D was used to construct univariate maps that converted the input variables (X) to normally distributed variables (Y). Principal component analysis (PCA) was used to transform the variables in Y to the uncoupled representation (T), where the univariate pdfs were assumed normal with specified variances. A standard random number generator was used to create synthetic variables with specified variances in T. Applying the inverse PCA transform to the synthetic variables in T produced the SP in Y. Applying the inverse maps produced the respective SP in X. Multiple tests were developed to compare univariate and multivariate pdfs and covariance matrices between the input (sample) and synthetic samples. Three datasets were investigated (n = 667) each with 10 input variables.ResultsFor all three datasets, both the univariate (in X, Y, and T) and multivariate (in X, Y, and T) tests showed that the univariate and multivariate pdfs from synthetic samples were statistically similar to their pdfs from the respective samples. Application of several tests for multivariate normality indicated that the SPs in Y were approximately normal. Covariance matrix comparisons (in X and Y) also indicated the same similarity.ConclusionsThe work demonstrates how to generate multivariate synthetic data that matches the real input data by converting the input into multiple 1D problems. The work also shows that it is possible to convert a multivariate input pdf to a form that approximates a multivariate normal, although the technique is not dependent upon this finding. Further studies are required to evaluate the generalizability of the approach.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3