In vitro experiments and kinetic models of pollen hydration show that MSL8 is not a simple tension-gated osmoregulator

Author:

Miller KariORCID,Strychalski WandaORCID,Nickaeen Masoud,Carlsson AndersORCID,Haswell Elizabeth S.ORCID

Abstract

SummaryPollen, a neighbor-less cell that contains the male gametes, undergoes multiple mechanical challenges during plant sexual reproduction, including desiccation and rehydration. It was previously showed that the pollen-specific mechanosensitive ion channel MscS-Like (MSL)8 is essential for pollen survival during hydration and proposed that it functions as a tension-gated osmoregulator. Here we test this hypothesis with a combination of mathematical modeling and laboratory experiments. Time-lapse imaging revealed that wild-type pollen grains swell and then stabilize in volume rapidly during hydration. msl8 mutant pollen grains, however, continue to expand and eventually burst. We found that a mathematical model wherein MSL8 acts as a simple tension-gated osmoregulator does not replicate this behavior. A better fit was obtained from variations of the model wherein MSL8 inactivation is independent of its membrane tension gating threshold or MSL8 strengthens the cell wall without osmotic regulation. Experimental and computational testing of several perturbations, including hydration in an osmolyte-rich solution, hyper-desiccation of the grains, and MSL8-YFP overexpression, indicated that the Cell Wall Strengthening Model best simulated experimental responses. Finally, expression of a non-conducting MSL8 variant did not complement the msl8 overexpansion phenotype. These data indicate that, contrary to our hypothesis and to known MS ion channel function in single-cell systems, MSL8 does not act as a simple membrane tension-gated osmoregulator. Instead, they support a model wherein ion flux through MSL8 is required to alter pollen cell wall properties. These results demonstrate the utility of pollen as a cellular-scale model system and illustrate how mathematical models can correct intuitive hypotheses.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3