A phosphoregulated RhoGEF feedback loop tunes cortical flow driven amoeboid migration in vivo

Author:

Lin BenjaminORCID,Luo Jonathan,Lehmann RuthORCID

Abstract

Cortical flow driven amoeboid migration utilizes friction from retrograde cortical actin flow to generate motion. Many cell types, including cancer cells, can assemble a cortical flow engine to migrate under confinement and low adhesion in vitro, but it remains unclear whether this engine is endogenously utilized in vivo. Moreover, in the context of a changing environment, it is not known how upstream regulation can set in motion and sustain a mutual feedback between flow and polarity. Here, we establish that Drosophila primordial germ cells (PGCs) utilize cortical flow driven amoeboid migration and that flows are oriented by external cues during developmental homing in vivo. The molecular basis of flow modulation is a phosphoregulated feedback loop involving RhoGEF2, a microtubule plus-end tracking RhoA specific RhoGEF, enriched at the rear of PGCs. RhoGEF2 depletion slows and disorganizes cortical flow, reducing migration speed, while RhoGEF2 activation accelerates cortical flow, thereby augmenting myosin II polarity and migration speed. Both perturbations impair PGC pathfinding, suggesting cortical flows must be tuned for accurate guidance. We surprisingly find that RhoGEF2 polarity and activation are independent of upstream canonical Gα12/13 signaling. Instead, its PDZ domain and conserved RhoA binding residues in its PH domain are required to establish a positive feedback loop that augments its basal activity. Upstream regulation of this feedback loop occurs via AMPK dependent multisite phosphorylation near a conserved EB1 binding SxIP motif, which releases RhoGEF2 from EB1 dependent inhibition. Thus, we reveal cortical flows as versatile, tunable engines for directed amoeboid migration in vivo.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3