A Single-Cell Approach Reveals Variation in Cellular Phage-Producing Capacities

Author:

Kannoly Sherin,Oken Gabriella,Shadan Jon,Musheyev David,Singh Kevin,Singh Abhyudai,Dennehy John J.ORCID

Abstract

ABSTRACTVirus burst size, a component of viral fitness, is the average number of viral particles released from a single infected cell. In this study, we estimated bacteriophage lambda (λ) burst size mean and distribution at different lysis times. To estimate phage λ burst sizes at single-cell level, we employed a lysis-deficient E. coli lysogen, which allowed chemical lysis at desired times after the induction of lytic cycle. Induced cultures of E. coli lysogen were diluted and aliquoted into the wells of 96-well plates. A high dilution rate results in mostly empty wells and minimizes the probability of having multiple cells in wells that do receive cells. Burst size was estimated by titering single-cell lysates obtained after chemical lysis at desired times. Our data shows that the viral burst size initially increases exponentially with the lysis time, and then saturates at longer lysis times. We also demonstrate that cell-to-cell variation or “noise” in lysis timing does not significantly contribute to the burst size noise. The burst size noise remains constant with increasing mean burst size. The most likely explanation for the experimentally observed constant burst size noise is that cell-to-cell differences in burst size originate from differences in cellular capacity to produce phages. The mean burst size measured at different lysis times is positively correlated to cell volume, which may determine the cellular phage production capacity. However, experiments controlling for cell size indicates that there are other factors in addition to cell size that determine this cellular capacity.ARTICLE IMPORTANCEPhages produce offspring by hijacking a cell’s replicative machinery. Previously, it was noted that the variation in the number of phages produced by single infected cells far exceeded cell size variation. It has been hypothesized that this variation is a consequence of variation in the timing of host cell lysis. Here we show that cell-to-cell variation in lysis timing does not significantly contribute to the burst size variation. We suggest that the constant burst size variation across different host lysis times results from cell-to-cell differences in capacity to produce phages. We find that the mean burst size measured at different lysis times is positively correlated to cell volume, which may determine the cellular phage production capacity. However, experiments controlling for cell size indicates that there are other factors in addition to cell size that determine this cellular capacity.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3