Bacterial, phytoplankton, and viral dynamics of meromictic Lake Cadagno offer insights into the Proterozoic ocean microbial loop

Author:

Saini Jaspreet SORCID,Hassler Christel,Cable RachelORCID,Fourquez Marion,Danza Francesco,Roman Samuele,Tonolla Mauro,Storelli Nicola,Jacquet Stéphan,Zdobnov Evgeny M.,Duhaime Melissa B.ORCID

Abstract

ABSTRACTLake Cadagno, a permanently stratified high-alpine lake with a persistent microbial bloom in its anoxic chemocline, has long been considered a model for the low-oxygen, high-sulfide Proterozoic ocean where early microbial life gave rise to Earth’s oxygenated atmosphere. Although the lake has been studied for over 25 years, the absence of concerted study of the bacteria, phytoplankton, and viruses, together with primary and secondary production, has hindered a comprehensive understanding of its microbial food web. Here, the identities, abundances, and productivity of microbes were evaluated in the context of Lake Cadagno biogeochemistry. Photo-synthetic pigments and chloroplast 16S rRNA gene phylogenies suggested high abundances of eukaryotic phytoplankton, primarily Chlorophyta, through the water column. Of these, a close relative of Ankyra judayi, a high-alpine adapted chlorophyte, peaked with oxygen in the mixolimnion, while Closteriopsis-related chlorophytes peaked in the chemocline and monimolimnion. Anoxygenic phototrophic sulfur bacteria, Chromatium, dominated the chemocline along with Lentimicrobium, a newly observed genus of known fermenters. Secondary production peaked in the chemocline, suggesting anoxygenic primary producers depended on heterotrophic nutrient remineralization. Virus-to-microbe ratios spanned an order of magnitude, peaking with high phytoplankton abundances and at a minimum at the peak of Chromatium, dynamic trends that suggest viruses may play a role in the modulation of oxygenic and anoxygenic photo- and chemosynthesis in Lake Cadagno. Through the combined analysis of bacterial, eukaryotic, viral, and biogeochemical dynamics of Lake Cadagno, this study provides a new perspective on the biological and geochemical connections that comprised the food webs of the Proterozoic ocean.IMPORTANCEAs a window to the past, the study offers insights into the role of microbial guilds of Proterozoic ocean chemoclines in the production and recycling of organic matter of sulfur- and ammonia-containing ancient oceans. The new observations described here suggest that eukaryotic algae were persistent in the low oxygen upper-chemocline in association with purple and green sulfur bacteria in the lower half of the chemocline. Further, this study provides the first insights into Lake Cadagno viral ecology. High viral abundances suggested viruses may be essential components of the chemocline where their activity may result in the release and recycling of organic matter. The framework developed in this study through the integration of diverse geochemical and biological data types lays the foundation for future studies to quantitatively resolve the processes performed by discrete populations comprising the microbial loop in this early anoxic ocean analogue.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3