Micro-aggregation of a pristine grassland soil selects for bacterial and fungal communities and changes in nitrogen cycling potentials

Author:

Keuschnig ChristophORCID,Martins Jean M.F.,Navel Aline,Simonet Pascal,Larose Catherine

Abstract

AbstractMicrobial analysis at the micro scale of soil is essential to the overall understanding of microbial organization and interactions, and necessary for a better understanding of soil ecosystem functioning. While bacterial communities have been extensively described, little is known about the organization of fungal communities as well as functional potentials at scales relevant to microbial interactions. Fungal and bacterial communities and changes in nitrogen cycling potentials in the pristine Rothamsted Park Grass soil (bulk soil) as well as in its particle size sub-fractions (PSFs; > 250 μm, 250-63 μm, 63-20 μm, 20-2 μm, < 2 μm and supernatant) were studied. The potential for nitrogen reduction was found elevated in bigger aggregates. The relative abundance of Basidiomycota deceased with decreasing particle size, Ascomycota showed an increase and Mucoromycota became more prominent in particles less than 20 μm.Bacterial community structures changed below 20 μm at the scale where microbes operate. Strikingly, only members of two bacterial and one fungal phyla (Proteobacteria, Bacteroidota and Ascomycota, respectively) were washed-off the soil during fractionation and accumulated in the supernatant fraction where most of the detected bacterial genera (e.g., Pseudomonas, Massilia, Mucilaginibacter, Edaphobaculum, Duganella, Janthinobacterium and Variovorax) were previously associated with exopolysaccharide production and biofilm formation.Overall, the applied method shows potential to study soil microbial communities at micro scales which might be useful in studies focusing on the role of specific fungal taxa in soil structure formation as well as research on how and by whom biofilm-like structures are distributed and organized in soil.ImportanceIntensive exploitation of soils has led to increasing environmental concerns such as pollution, erosion, emission of greenhouse gases and, in general, the weakening of its ecosystem services that are mainly regulated by microbial activity. Microbial activity and metabolism drive the formation of soil aggregates, ranging in size from a few micrometres to several millimetres. Understanding biological mechanisms related to aggregate size classes can provide insight into large-scale processes, but most research has focused on macroaggregates. Here, we investigated the microbial community and its functional changes at these smaller scales that are clearly more relevant for assessing microbial activity. We demonstrated that fungal communities are more sensitive to bigger size classes than bacteria, suggesting their dominant role in soil structure formation and turnover. We also identified preferential niches for reductive processes within the nitrogen cycle and a selection of specific taxa by analysing the water used for the wet-fractionation approach.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3