Electronic Mapping of a Bacterial Genome with Dual Solid-State Nanopores and Active Single-Molecule Control

Author:

Rand Arthur,Zimny Philip,Nagel Roland,Telang Chaitra,Mollison Justin,Bruns Aaron,Leff Emily,Reisner WalterORCID,Dunbar William B.ORCID

Abstract

AbstractWe present the first electronic mapping of a bacterial genome using solid-state nanopore technology. A dual-nanopore architecture and active control logic are used to produce single-molecule data that enables estimation of distances between physical tags installed at sequence motifs within double-stranded DNA (dsDNA). Previously developed dual-pore “DNA flossing” control generates multiple scans of tagged regions of each captured DNA. The control logic was extended here in two ways: first, to automate “zooming out” on each molecule to progressively increase the number of tags scanned during DNA flossing; and second, to automate recapture of a molecule that exited flossing to enable interrogation of the same and/or different regions of the molecule. New analysis methods were developed to produce consensus alignments from each multi-scan event. The combined multi-scanning and multi-capture method was applied to the challenge of mapping from a heterogeneous mixture of single-molecule fragments that make up the Escherichia coli (E. coli) chromosome. Coverage of 3.1× across 2,355 resolvable sites (68% of reference sites) of the E. coli genome was achieved after 5.6 hours of recording time. The recapture method showed a 38% increase in the merged-event alignment length compared to single-scan alignments. The observed inter-tag resolution was 150 bp in engineered DNA molecules and 166 bp natively within fragments of E. coli DNA, with detection of 133 inter-site intervals shorter than 200 bp in the E. coli reference map. Proof of concept results on estimating distances in repetitive regions of the E. coli genome are also provided. With an appropriately designed array and future refinements to the control logic, higher throughput implementations can enable human-sized genome and epigenome mapping applications.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3