Capillary stall quantification from optical coherence tomography angiogram maximum intensity projections

Author:

Fruekilde Signe K.ORCID,Jiménez Eugenio G.,Drasbek Kim R.,Bailey Christopher J.ORCID

Abstract

AbstractOptical coherence tomography (OCT) is applicable to the study of cerebral microvasculature in vivo. Optimised acquisition schemes enable the generation of three-dimensional OCT angiograms, i.e., volumetric images of red blood cell flux in capillary networks, currently at a repetition rate of up to 1/10 seconds. This makes testable a new class of hypotheses that strive to bridge the gap between microscopic phenomena occurring at the spatial scale of neurons, and less invasive but crude techniques to measure macroscopic blood flow dynamics. Here we present a method for quantifying the occurrence of transient capillary stalls in OCT angiograms, i.e., events during which blood flow through a capillary branch is temporarily occluded. By making the assumption that information on such events is present predominantly in the imaging plane, we implemented a pipeline that automatically segments a network of interconnected capillaries from the maximum intensity projections (MIP) of a series of 3D angiograms. We then developed tools enabling rapid manual assessment of the binary flow status (open/stalled) of hundreds of capillary segments based on the intensity profile of each segment across time. The entire pipeline is optimized to run on a standard laptop computer, requiring no high-performance, low-availability resources, despite very large data volumes. To further reduce the threshold of adoption, and ultimately to support the development of reproducible research methods in the young field, we provide the documented code for scrutiny and re-use under a permissive open-source license.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3